Section 3: Representing Categorical Data

The following maps the videos in this section to the Texas Essential Knowledge and Skills for Mathematics TAC §111.47(c).

3.01 Frequency Tables

- Statistics (1)(D)
- Statistics (1)(E)
- Statistics (4)(F)

3.02 Joint, Marginal, and Conditional Frequencies

- Statistics (1)(C)
- Statistics (1)(F)
- Statistics (4)(F)
- Statistics (5)(A)

3.03 Pie Charts

- Statistics (1)(D)
- Statistics (1)(E)
- Statistics (4)(B)

3.04 Bar Charts

- Statistics (1)(D)
- Statistics (1)(E)
- Statistics (4)(B)

3.05 Comparing Distributions

- Statistics (1)(A)
- Statistics (1)(B)
- Statistics (1)(D)
- Statistics (1)(E)
- Statistics (4)(B)
- Statistics (4)(D)

Note: Unless stated otherwise, any sample data is fictitious and used solely for the purpose of instruction.

<u>3.01</u>

Frequency Tables

What is the difference between categorical and quantitative data?

Why are there different ways to summarize and display both types of data?

Once categorical or quantitative data has been collected, it must be summarized. The ______ of a data set shows the values of the variable and how often they occur.

A *frequency table* is constructed by arranging a set of collected data values with their corresponding frequencies.

1. Suppose 50 local high school students were randomly selected and each student was asked to rate his or her study habits. Shown below are the frequency table and *relative frequency table* summarizing the results. Interpret the tables.

Frequency Table		Relative Frequency Table		
Rating	Frequency	Rating	Relative Frequency	
Excellent	7	Excellent	7/50 = 0.14	
Very Good	14	Very Good	14/50 = 0.28	
Good	16	Good	16/50 = 0.32	
Poor	9	Poor	9/50 = 0.18	
Very Poor	4	Very Poor	4/50 = 0.08	
Total	50	Total	50/50 = 1	

2. Suppose 15 random adults in a local community were randomly selected, and each person was asked to rate how concerned he or she was about a new restaurant that's being built. The responses are displayed below. Complete the frequency table and relative frequency table summarizing the results.

1	Not at All Concerned	6	Moderately Concerned	11	Extremely Concerned
2	Extremely Concerned	7	Extremely Concerned	12	Moderately Concerned
3	Somewhat Concerned	8	Extremely Concerned	13	Somewhat Concerned
4	Somewhat Concerned	9	Moderately Concerned	14	Not at All Concerned
5	Slightly Concerned	10	Extremely Concerned	15	Moderately Concerned

Frequency Table		<u>Relative</u>	Relative Frequency Table		
Concerned	Frequency	Concerned	Relative Frequency		
Extremely		Extremely			
Moderately		Moderately			
Somewhat		Somewhat			
Slightly		Slightly			
Not at All		Not at All			
Total		Total			

3. Complete the following frequency table and relative frequency table summarizing the results from a hypothetical study that evaluated the priority local voters placed on education in comparison to other policies in the upcoming local elections.

Frequency Table		Relative Frequency Table		
Priority	Frequency	Priority	Relative Frequency	
Essential	314	Essential		
High Priority		High Priority	0.25	
Medium Priority		Medium Priority	0.28	
Low Priority	86	Low Priority		
Not a Priority		Not a Priority	0.07	
Total	1000	Total		

Joint, Marginal, and Conditional Frequencies

Suppose Joanna surveys 20 of her friends to determine the most popular geometry teacher in the school. She asks her friends, 12 boys and eight girls, which geometry teacher they would prefer: Mr. Lewinsky, Ms. Ramirez, Ms. Gundy, or Mr. Garnet. Joanna uses a two-way table to analyze her data.

A *two-way table* is used to examine relationships among categorical data. The entries in the cells of a two-way table can be ______ or _____. This type of table is also known as a ______ table.

Joanna's two-way table is shown below:

	Mr. Lewinsky	Ms. Ramirez	Ms. Gundy	Mr. Garnet	Total
Boys	4	2	3	3	12
Girls	1	1	2	4	8
Total	5	3	5	7	20

 Entries in the "Total" column and "Total" row are called ______ frequencies.

 Entries in the body of the table are called ______ frequencies.

Marginal ______ are found by dividing the row and/or column totals by the total sample size.

1. Complete the following tables:

Marginal Distribution		Margi	Marginal Distribution		
Gender	Probability	Teacher	Probability		
Boys	12/20 =	Mr. Lewinsky	5/20 =		
Girls	8/20 =	Ms. Ramirez	3/20 =		
Total	20/20 = 1	Ms. Gundy	5/20 =		
		Mr. Garnet	7/20 =		
		Total	20/20 = 1		

Also, ______ frequencies are found by dividing the cell counts by their row and/or column totals.

2. Complete the following tables:

	Distribution for Boys		Distribution for Girls
Teacher	Probability	Teacher	Probability
Mr. Lewinsky	4/12 =	Mr. Lewinsky	1/8 =
Ms. Ramirez	2/12 =	Ms. Ramirez	1/8 =
Ms. Gundy	3/12 =	Ms. Gundy	2/8 =
Mr. Garnet	3/12 =	Mr. Garnet	4/8 =
Total	12/12 = 1	Total	8/8 = 1

3. Shown below is a contingency table classifying responses for the variables *Social Life Rating* and *Gender*.

	Excellent	Very Good	Good	Poor	Very Poor	Total
Male	2	5	10	6	3	26
Female	5	9	6	3	1	24
Total	7	14	16	9	4	50

i. Determine the marginal relative probabilities for Gender and Social Life Rating by completing the tables below.

Marginal Relative Probabilities		Marginal Relative Probabilities		
Gender	Probability	Social Life	Probability	
Male		Excellent		
Female		Very Good		
Total	50/50 = 1	Good		
		Poor		
		Very Poor		
		Total	50/50 = 1	

- ii. What is the marginal relative frequency of people with a "Good" social life rating?
- iii. What is the joint frequency of males with a "Very Good" social life rating?
- iv. What is the conditional relative frequency of females with an "Excellent" social life rating?

<u>3.03</u>

Pie Charts

A *pie chart* displays data in a _____ graph.

- The pieces of the graph are ______ to the fraction of the whole in each category.
- The area of each slice is determined by each category's count or percentage.
- 1. Consider the following pie chart, which represents the eating habits of 50 employees at a local company.

How can we interpret this pie chart?

- 2. Assume that the following data represents the educational attainment of persons in a local county.
 - i. Complete the relative frequency table.

Frequency Table		Relative Freque	ncy Table
Educational	Frequency	Educational	Relative
Attainment		Attainment	Frequency
No High School	15,000	No High School	
High School	25,000	High School	
Some College	15,000	Some College	
Associate's	25,000	Associate's	
Bachelor's	100,000	Bachelor's	
Advanced	20,000	Advanced	
Total	200,000	Total	

ii. Construct a pie chart of the data.

3. Consider the pie chart below:

Suppose this pie chart displays the details of Avery's investment portfolio. The portfolio's value is \$300,000. There are three varieties of mutual funds: equity funds (25%), fixed-income funds (35%), and money market funds (40%).

- i. What percentage of the portfolio consists of equity funds?
- ii. How much money does Avery have invested in bonds?
- iii. How much money does Avery have invested in money market funds?

3.04

Bar Charts

A *bar chart* displays the frequency or relative frequency for each category of a categorical variable using bars on a graph.

- The bars are positioned with a label that represents a ______.
- The bars can be drawn either vertically or ______.
- The height or length of the bar indicates the ______ of the group, defined by the column or row label.
- For most categorical variables, the bar order is ______.

1. Assume 500 teens were interviewed and the results are shown in the bar chart below:

How many teens in the sample were very familiar with 90s popular music?

2. Suppose 50 AP Statistics students were randomly selected, and each student was asked to rate his or her teacher. Shown below is the frequency table summarizing the results. Construct a bar chart of the data.

Frequency Table		AD Statistics Tapphor Datings
Rating	Frequency	AP Statistics leacher Ratings
Excellent	15	18
Very Good	14	15
Good	10	12
Poor	6	
Very Poor	5	
Total	50	
		3
		Excellent Very Good Good Poor Very Poor

<u>3.05</u>

Comparing Distributions

1. Suppose 100 people in the 26–35 age group were randomly selected, and each person was asked to rate his or her social life. If Social Life Rating is independent of Gender, a side-by-side bar chart of the conditional distributions would look like the one below.

What conclusion can be drawn about the data above?

2. Now, let's consider students' attitudes toward a switch to block scheduling. Suppose 500 students were randomly selected: 50% males and 50% females. The bar graph displaying the results of the survey is shown below.

What conclusions can be drawn?

3. Suppose 100 people were interviewed and classified according to their attitudes toward public transportation in their city, as well as their personality types. The results are shown in the bar chart below.

Which of the following statements is correct?

- **A.** Of the people interviewed, 35% have a positive attitude toward public transportation.
- **B.** There were 50 people with a neutral attitude toward public transportation.
- **C.** Forty people with Type B personality were interviewed.
- **D.** People with Type A personality tend to have a negative attitude toward public transportation.
- **E.** Of the people interviewed, 50% have Type A personality.

4. Suppose a random sample of 100 voters was taken. Each voter was asked his or her political affiliation and whether he or she favored a certain political issue. Their responses are cross-classified in the contingency table and pie charts below.

	Favor		
Party Affiliation	Yes	No	Total
Democrat	10	25	35
Republican	30	10	40
Independent	15	10	25
Total	55	45	100

What conclusions can be drawn?

