Section 6: Trigonometric Identities and Applications

The following maps the videos in this section to the Texas Essential Knowledge and Skills for Mathematics TAC §111.42(c).

6.01 Trigonometric Identities

- Precalculus (5)(M)
- Precalculus (5)(N)

6.02 Solving Trigonometric Equations

- Precalculus (5)(M)
- Precalculus (5)(N)

6.03 Sum and Difference Formulas of Trigonometric Functions

- Precalculus (5)(M)
- Precalculus (5)(N)

6.04 Double Angle and Half Angle Formulas of Trigonometric Functions

6.05 Law of Sines and Cosines

- Precalculus (4)(G)
- Precalculus (4)(H)

6.06 Trigonometric Word Problems

- Precalculus (4)(E)
- Precalculus (4)(F)
- Precalculus (5)(M)
- Precalculus (5)(N)

6.07 Vectors

- Precalculus (4)(I)
- Precalculus (4)(J)
- Precalculus (4)(K)

Trigonometric Identities

Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Cofunction Identities

$\sin\theta = \cos(90 - \theta)$	$\sec \theta = \csc(90 - \theta)$	$\tan\theta=\cot(90-\theta)$
$\cos\theta = \sin(90 - \theta)$	$\csc\theta = \sec(90 - \theta)$	$\cot \theta = \tan(90 - \theta)$

Negative Angle Identities (Even/Odd Functions)

 $\sin (-\theta) = -\sin \theta$ $\cos (-\theta) = \cos \theta$ $\tan(-\theta) = -\tan \theta$

Pythagorean Identities

 $sin^{2}\theta + cos^{2}\theta = 1$ $1 + tan^{2}\theta = sec^{2}\theta$ $1 + cot^{2}\theta = csc^{2}\theta$

1. Given
$$\sec\left(\frac{\pi}{2} - \theta\right) = 3$$
 and $\cos \theta > 0$, find $\cot \theta$.

Below are some guidelines for matching or verification problems:

- Step 1: Start with any identities.
- Step 2: Use the methods of factoring, common denominators, separating numerators, and conjugates.

Step 3: If nothing is working, try changing everything to $\sin \theta$ and $\cos \theta$.

2. Verify $\frac{1-\cos x}{1+\cos x} = 2\csc^2 x - 2\csc x \cot x - 1$.

3. Verify $\frac{\csc x+1}{\csc x-1} = \frac{1+\sin x}{1-\sin x}.$

Solving Trigonometric Equations

For these equations, more than one solution may exist, or there may be no solution.

1. Solve for all angles $A: 2\cos A - 1 = 0$

2. Solve $\cos x \cot x = \cos x$ for all angles.

3. Solve $\cos^2 A - 4\cos A + 3 = 0$ in the interval $[0,2\pi)$.

<u>6.03</u>

Sum and Difference Identities

$\sin(u+v) = \sin u \cos v + \cos u \sin v$	$\sin(u-v) = \sin u \cos v - \cos u \sin v$
$\cos(u+v) = \cos u \cos v - \sin u \sin v$	$\cos(u-v) = \cos u \cos v + \sin u \sin v$
$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}$	$\tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$

1. Find cos 75° using sum and difference identities.

2. Find $\tan(A + B)$ if $\sin A = \frac{4}{5}$, A is in Quadrant II, $\sin B = -\frac{12}{13}$ and B is in Quadrant IV.

<u>6.04</u>

Double-Angle and Half-Angle Identities

Double-Angle Formulas

$$\sin 2u = 2\sin u \cos u$$
$$\cos 2u = \cos^2 u - \sin^2 u = 2\cos^2 u - 1 = 1 - 2\sin^2 u$$
$$\tan 2u = \frac{2\tan u}{1 - \tan^2 u}$$

1. If $\sin B = -\frac{1}{3}$ and $\tan B < 0$, find $\sin 2B$.

2. Solve $\sin 2A = \cos A$ on the interval $[0,2\pi)$.

Half-Angle Formulas

$$\sin\frac{u}{2} = \pm \sqrt{\frac{1 - \cos u}{2}}$$
$$\cos\frac{u}{2} = \pm \sqrt{\frac{1 + \cos u}{2}}$$
$$\tan\frac{u}{2} = \pm \sqrt{\frac{1 - \cos u}{1 + \cos u}} = \frac{1 - \cos u}{\sin u} = \frac{\sin u}{1 + \cos u}$$

3. Find the exact value of $\sin 105^\circ$ using half-angle formulas.

4. Find the exact value of $\cos \frac{x}{2}$ if $\cos x = \frac{1}{5}$ and x is in the fourth quadrant.

Law of Sines and Cosines

The law of sines and cosines is used for **oblique triangles**, which are triangles that do not have right angles.

Given angles A, B, and C of an oblique triangle with opposite sides a, b, and c, we have

Law of sines $-\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Law of cosines – $a^2 = b^2 + c^2 - 2bc \cos A$ $b^2 = a^2 + c^2 - 2ac \cos B$ $c^2 = a^2 + b^2 - 2ab \cos C$

1. Given an oblique triangle where a = 4, b = 7, and c = 6, find angle C.

2. Given an oblique triangle where b = 4, c = 7, and angle C = 50, find sin B.

3. Find side c of an oblique triangle with side a = 4, angle $A = 50^{\circ}$, and angle $B = 60^{\circ}$.

We have two equations for the area of an oblique triangle:

Heron's formula for area – Given sides a, b, c and the semi-perimeter s, we have

$$s = \frac{1}{2}(a+b+c)$$
 and the area $A = \sqrt{s(s-a)(s-b)(s-c)}$

Area of an oblique triangle – Given two sides and the angle between them, we have $A = \frac{1}{2}ab\sin\gamma$ $A = \frac{1}{2}ac\sin\beta$ $A = \frac{1}{2}bc\sin\alpha$

4. Find the area of an oblique triangle with the properties a = 4, b = 7, and $C = 75^{\circ}$.

5. Find the area of a triangle whose sides have lengths of 3 ft, 5 ft, and 6 ft.

Trigonometric Word Problems

1. Suppose you lean an 8-foot ladder against a wall at a 60-degree angle of elevation. How high is the top of the ladder from the base of the wall?

2. Imagine that a man is floating in the ocean, waiting to be rescued. He spots two helicopters on exactly opposite sides of him, one at a 30-degree angle of elevation and the other at a 60-degree angle of elevation. If the helicopters are both flying at an altitude of 100 meters, what is the distance between the helicopters?

3. A plane lifts off at an angle of elevation of 20 degrees at a rate of 300 feet per second. How many minutes pass before it reaches an altitude of 6,000 feet?

<u>6.07</u> Vectors

A *vector* is a directed line segment in a plane.

- A vector is a *directed line segment* and has an initial point and a terminal point.
- Vectors have a magnitude (length) and a direction.
 - Magnitude can be calculated using the distance formula.
 - Direction can be calculated using trigonometry.
- Vectors can be written as $v = \overrightarrow{PQ}$ where *P* and *Q* are two points on a plane.
- Vectors can also be written in *component form* as v = (v₁, v₂).

1. Find the component form and magnitude of a vector with initial point (2,-5) and terminal point (-1,-9).

2. A ship sails from port and travels on a bearing of 30 degrees north of east at a speed of 20 nautical miles per hour. After three hours, how far east has the ship sailed?

Vector addition – Given two vectors $u = \langle u_1, u_2 \rangle$ and $v = \langle v_1, v_2 \rangle$, then $u + v = \langle u_1 + v_1, u_2 + v_2 \rangle$.

Scalar multiplication – Given a vector $v = \langle v_1, v_2 \rangle$ and a constant *c*, then $cv = \langle cv_1, cv_2 \rangle$.

3. Given $u = \langle 5, 8 \rangle$ and $v = \langle -3, 7 \rangle$, find u + v, 3u, and 3u - 4v in component form.

4. A cyclist started from her home and traveled four miles west, then three miles northeast, and finally two miles south. How far is the cyclist from her home?