Section 6: Trigonometric Identities and Applications

The following maps the videos in this section to the Texas Essential Knowledge and Skills for Mathematics TAC §111.42(c).

6.01 Trigonometric Identities

- Precalculus (5)(M)
- Precalculus (5)(N)

6.02 Solving Trigonometric Equations

- Precalculus (5)(M)
- Precalculus (5)(N)

6.03 Sum and Difference Formulas of Trigonometric Functions

- Precalculus (5)(M)
- Precalculus (5)(N)

6.04 Double Angle and Half Angle Formulas of Trigonometric Functions

6.05 Law of Sines and Cosines

- Precalculus (4)(G)
- Precalculus (4)(H)

6.06 Trigonometric Word Problems

- Precalculus (4)(E)
- Precalculus (4)(F)
- Precalculus (5)(M)
- Precalculus (5)(N)

6.07 Vectors

- Precalculus (4)(I)
- Precalculus (4)(J)
- Precalculus (4)(K)
6.01

Trigonometric Identities

Reciprocal Identities

$\sin \theta=\frac{1}{\csc \theta}$
$\cos \theta=\frac{1}{\sec \theta}$
$\tan \theta=\frac{1}{\cot \theta}$

Quotient Identities

$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

Cofunction Identities

$\sin \theta=\cos (90-\theta)$
$\sec \theta=\csc (90-\theta)$
$\tan \theta=\cot (90-\theta)$
$\cos \theta=\sin (90-\theta)$
$\csc \theta=\sec (90-\theta)$
$\cot \theta=\tan (90-\theta)$

Negative Angle Identities (Even/Odd Functions)

$\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=\cos \theta$
$\tan (-\theta)=-\tan \theta$

Pythagorean Identities

$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

1. Given $\sec \left(\frac{\pi}{2}-\theta\right)=3$ and $\cos \theta>0$, find $\cot \theta$.

2. Verify $\frac{1-\cos x}{1+\cos x}=2 \csc ^{2} x-2 \csc x \cot x-1$.
3. Verify $\frac{\csc x+1}{\csc x-1}=\frac{1+\sin x}{1-\sin x}$.

6.02

Solving Trigonometric Equations

For these equations, more than one solution may exist, or there may be no solution.

1. Solve for all angles $A: 2 \cos A-1=0$

Below are steps to use when asked to solve for all angles:
Step 1: Solve for angles within the specified interval.
Step 2: If the angles are separated by π radians, take the smallest of the two angles and add πn, where n is an integer.

Step 3: If the angles are not separated by π radians, take each angle and add $2 \pi n$, where n is an integer.
2. Solve $\cos x \cot x=\cos x$ for all angles.
3. Solve $\cos ^{2} A-4 \cos A+3=0$ in the interval $[0,2 \pi)$.

Sum and Difference Identities

$$
\begin{array}{ll}
\sin (u+v)=\sin u \cos v+\cos u \sin v & \sin (u-v)=\sin u \cos v-\cos u \sin v \\
\cos (u+v)=\cos u \cos v-\sin u \sin v & \cos (u-v)=\cos u \cos v+\sin u \sin v \\
\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v} & \tan (u-v)=\frac{\tan u-\tan v}{1+\tan u \tan v}
\end{array}
$$

1. Find $\cos 75^{\circ}$ using sum and difference identities.
2. Find $\tan (A+B)$ if $\sin A=\frac{4}{5}, A$ is in Quadrant II, $\sin B=-\frac{12}{13}$, and B is in Quadrant IV.

6.04
 Double-Angle and Half-Angle Identities

Double-Angle Formulas

$$
\sin 2 u=2 \sin u \cos u
$$

$$
\cos 2 u=\cos ^{2} u-\sin ^{2} u=2 \cos ^{2} u-1=1-2 \sin ^{2} u
$$

$$
\tan 2 u=\frac{2 \tan u}{1-\tan ^{2} u}
$$

1. If $\sin B=-\frac{1}{3}$ and $\tan B<0$, find $\sin 2 B$.
2. Solve $\sin 2 A=\cos A$ on the interval $[0,2 \pi)$.

Half-Angle Formulas

$\sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}}$
$\cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos u}{2}}$
$\tan \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{1+\cos u}}=\frac{1-\cos u}{\sin u}=\frac{\sin u}{1+\cos u}$
3. Find the exact value of $\sin 105^{\circ}$ using half-angle formulas.
4. Find the exact value of $\cos \frac{x}{2}$ if $\cos x=\frac{1}{5}$ and x is in the fourth quadrant.

6.05

Law of Sines and Cosines

The law of sines and cosines is used for oblique triangles, which are triangles that do not have right angles.

Given angles A, B, and C of an oblique triangle with opposite sides a, b, and c, we have

Law of sines $-\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Law of cosines $-a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Here are some strategies to consider when deciding to use the law of sines or the law of cosines:

- Law of sines: Use when you are given two angles and one side.
- Law of cosines: Use when you are given all three sides or two sides and one angle.

1. Given an oblique triangle where $a=4, b=7$, and $c=6$, find angle C.
2. Given an oblique triangle where $b=4, c=7$, and angle $C=50$, find $\sin B$.
3. Find side c of an oblique triangle with side $a=4$, angle $A=50^{\circ}$, and angle $B=60^{\circ}$.

We have two equations for the area of an oblique triangle:

Heron's formula for area-Given sides a, b, c and the semi-perimeter s, we have $s=\frac{1}{2}(a+b+c) \quad$ and the area $A=\sqrt{s(s-a)(s-b)(s-c)}$

Area of an oblique triangle - Given two sides and the angle between them, we have $A=\frac{1}{2} a b \sin \gamma$ $A=\frac{1}{2} a c \sin \beta \quad A=\frac{1}{2} b c \sin \alpha$
4. Find the area of an oblique triangle with the properties $a=4, b=7$, and $C=75^{\circ}$.
5. Find the area of a triangle whose sides have lengths of $3 \mathrm{ft}, 5 \mathrm{ft}$, and 6 ft .

6.06

Trigonometric Word Problems

1. Suppose you lean an 8 -foot ladder against a wall at a 60 -degree angle of elevation. How high is the top of the ladder from the base of the wall?
2. Imagine that a man is floating in the ocean, waiting to be rescued. He spots two helicopters on exactly opposite sides of him, one at a 30-degree angle of elevation and the other at a 60 -degree angle of elevation. If the helicopters are both flying at an altitude of 100 meters, what is the distance between the helicopters?
3. A plane lifts off at an angle of elevation of 20 degrees at a rate of 300 feet per second. How many minutes pass before it reaches an altitude of 6,000 feet?

6.07

Vectors

A vector is a directed line segment in a plane.

- A vector is a directed line segment and has an initial point and a terminal point.
- Vectors have a magnitude (length) and a direction.
- Magnitude can be calculated using the distance formula.
- Direction can be calculated using trigonometry.
- Vectors can be written as $v=\overrightarrow{P Q}$ where P and Q are two points on a plane.
- Vectors can also be written in component form as $v=$ $\left\langle v_{1}, v_{2}\right\rangle$.

1. Find the component form and magnitude of a vector with initial point $(2,-5)$ and terminal point (-1,-9).
2. A ship sails from port and travels on a bearing of 30 degrees north of east at a speed of 20 nautical miles per hour. After three hours, how far east has the ship sailed?

Vector addition - Given two vectors $u=\left\langle u_{1}, u_{2}\right\rangle$ and $v=\left\langle v_{1}, v_{2}\right\rangle$, then $u+v=\left\langle u_{1}+v_{1}, u_{2}+v_{2}\right\rangle$.

Scalar multiplication - Given a vector $v=\left\langle v_{1}, v_{2}\right\rangle$ and
 a constant c, then $c v=\left\langle c v_{1}, c v_{2}\right\rangle$.
3. Given $u=\langle 5,8\rangle$ and $v=\langle-3,7\rangle$, find $u+v, 3 u$, and $3 u-4 v$ in component form.
4. A cyclist started from her home and traveled four miles west, then three miles northeast, and finally two miles south. How far is the cyclist from her home?

